update to include datapoints

This commit is contained in:
acereca 2018-06-03 21:12:59 +02:00
parent 6675b0074b
commit 6af430ce14
1 changed files with 22 additions and 19 deletions

View File

@ -8,15 +8,12 @@ import VisTools.plotting as vt
import uncertainties as unc
import uncertainties.unumpy as unp
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table as st
plt.ioff()
plt.style.use('bmh')
fig, axarr = plt.subplots(
2,
1,
figsize=(9, 8),
figsize=(10, 8),
gridspec_kw = {'height_ratios':[4,1]}
)
plt.subplots_adjust(hspace=.5)
@ -26,6 +23,7 @@ fits = np.array([])
errs = np.array([])
colors = np.array([])
data['dv_pit48/v'] /= 2
data['Dv'] = data['v_pit48/v'] - data['v_set/v']
data['Dvk'] = data['v_keith/v'] - data['v_set/v']
print(data)
@ -36,10 +34,10 @@ def plot_and_linfit(col: str,fil, l: str):
p = axarr[0].errorbar(
data[fil]['v_set/v'],
data[fil][col],
alpha = 0,
alpha = 0.3,
label=None,
# fmt='.',
# antialiased=True
fmt='.',
antialiased=True
)
vals = vt.lm_plot(
@ -55,13 +53,16 @@ def plot_and_linfit(col: str,fil, l: str):
return vals, p
plot_and_linfit('Dvk', data.cycles == 0, 'ref')
for i in range(8):
val, p = plot_and_linfit('Dv', data.cycles == i, 'scaler: {}'.format(i))
val, p = plot_and_linfit(
'Dv',
data.cycles == i,
'$f_{}={{m:.3f}}\\cdot x{{c:+.3f}}V$'.format(i))
fits = np.append(fits, val[0])
#errs = np.append(errs, np.sqrt(pcov[0][0]))
#colors = np.append(colors, p[0].get_color() )
plot_and_linfit('Dvk', data.cycles == 0, 'reference measurement')
print(fits[0].n)
for i in range(8):
@ -77,14 +78,16 @@ axarr[0].set_xlabel('V$_{set}$/V')
#axarr[0].set_title("PowerIt ADC Calibration: dependency on measurement cycles")
axarr[0].set_ylabel('$\Delta$V$_{IN}$ / V')
axarr[1].set_xlabel('sampleTicks scaler')
axarr[1].set_ylabel('$\Delta(\Delta$V$_{IN})$')
axarr[0].legend(bbox_to_anchor=(0, -.28,1, 1), loc="lower left",
mode="expand", borderaxespad=0, ncol=5)
#plt.tight_layout()
plt.savefig("./" + __file__[:-3].split("_")[1] + ".pdf", dpi=1000, bbox_inches='tight')
axarr[1].set_xlabel('scaler value')
axarr[1].set_ylabel('$m = \Delta$Gain')
axarr[0].legend(
bbox_to_anchor=(0, -.29,1, 1),
loc="lower left",
mode="expand",
borderaxespad=0,
ncol=3)
plt.savefig(
"./" + __file__[:-3].split("_")[1] + ".pdf",
dpi=1000,
bbox_inches='tight')
ss, d, ss2 = st(sm.OLS(data[data.cycles == 0]['v_pit48/v'], data[data.cycles == 0]['v_set/v']).fit(), alpha=.05)
low_ci, high_ci = d[:,4:6].T