update start with reg plots and models
This commit is contained in:
parent
4ea048d8a2
commit
ab0fc445a7
Binary file not shown.
|
@ -2,6 +2,7 @@ import matplotlib.pyplot as plt
|
|||
import numpy as np
|
||||
|
||||
plt.style.use('bmh')
|
||||
plt.rcParams['axes.facecolor'] = 'white'
|
||||
plt.figure(figsize=(8, 3))
|
||||
|
||||
def gen_48v_theory():
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -170,7 +170,7 @@ Wanting to observe and characterize the voltage drop, happening between the Powe
|
|||
\begin{figure}[H]
|
||||
\centering
|
||||
\hspace*{-.16\columnwidth}
|
||||
\includegraphics[width=1.3\columnwidth]{../pitstop/20180727/ret_vdip.pdf}
|
||||
\includegraphics[width=1.3\columnwidth]{../pitstop/20180807/ret_vdip.pdf}
|
||||
\caption{Voltage dip observed between PowerIt and HICANN, each point represents the state after enabling additional Reticles on the PowerWafer ()}
|
||||
\label{1v8dip}
|
||||
\end{figure}
|
||||
|
@ -182,7 +182,7 @@ The initial approach is a numerical. Through derivation from figures \ref{1v8dip
|
|||
\begin{figure}[H]
|
||||
\centering
|
||||
\hspace*{-.16\columnwidth}
|
||||
\includegraphics[width=1.3\columnwidth]{../pitstop/20180727/ret_regulation.pdf}
|
||||
\includegraphics[width=1.3\columnwidth]{../pitstop/20180807/ret_regulation.pdf}
|
||||
\caption{Potentiometer Setting (discrete integer), derived from ouput current (discrete floating point). }
|
||||
\label{numericalreg}
|
||||
\end{figure}
|
||||
|
@ -209,5 +209,34 @@ where c is obtained from the linear fit (incline) in figure \ref{1v8dip}
|
|||
c = 71.6978\cdot 10^{-3} \frac V A
|
||||
\end{align}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\hspace*{-.1\columnwidth}
|
||||
\includegraphics[width=1.2\columnwidth]{../pitstop/20180807/reticle_pic}
|
||||
\caption{ret5wafer}
|
||||
\label{fig:wafer-ret5}
|
||||
\end{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\hspace*{-.15\columnwidth}
|
||||
\includegraphics[width=1.3\columnwidth]{../pitstop/20180807/reticle_corr}
|
||||
\caption{ret5}
|
||||
\label{fig:ret5}
|
||||
\end{figure}
|
||||
|
||||
\begin{align}
|
||||
\pyval{r0_from_neighbor}\\
|
||||
\pyval{r0_from_farthest}\\
|
||||
\pyval{r0mean}\\
|
||||
\pyval{r0meancorr}
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
\pyval{r1_from_neighbor}\\
|
||||
\pyval{r1_from_farthest}\\
|
||||
\pyval{r1mean}\\
|
||||
\pyval{r1meancorr}
|
||||
\end{align}
|
||||
|
||||
\section{Pitfalls}
|
||||
|
||||
|
|
|
@ -22,8 +22,8 @@ The hardware used in this thesis is a PowerIt board (fig. \ref{}), developed in
|
|||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=.9\textwidth]{pics/poweritv2_teststand_2}
|
||||
\caption{PowerIt Board top view, in test}
|
||||
\includegraphics[width=.7\textwidth]{pics/poweritv2_teststand_2}
|
||||
\caption{PowerIt Board, top view, receiving 48V as input (top left) and outputting 9.6V (top and bottom) as well as 1.8V (analog: top left, bottom right; digital: top right, bottom left)}
|
||||
\label{}
|
||||
\end{figure}
|
||||
|
||||
|
|
|
@ -82,7 +82,7 @@ Our calculation is based on:
|
|||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=.7\textwidth]{./tikz/gen18v.pdf}
|
||||
\includegraphics[width=.6\textwidth]{./tikz/gen18v.pdf}
|
||||
\caption{Circuit for generating a changable Output Voltage}
|
||||
\label{gen18v}
|
||||
\end{figure}
|
||||
|
@ -140,7 +140,7 @@ Therefore the voltage Differential as measured by a Voltmeter (\autoref{retmodel
|
|||
|
||||
\begin{align} \label{eq:vdip}
|
||||
V_{dip} =&\ V_{R_1} + V_{R_0} \nonumber\\
|
||||
=&\ R_1 \cdot I_{ret} + R_0 \cdot I_{ges}(n_{ret}) \nonumber\\
|
||||
=&\ R_1 \cdot I_{ret} + R_0 \cdot I_{ges} \nonumber\\
|
||||
=&\ I_{ret} \cdot \left( R_1 + R_0 \cdot n_{ret} \right)
|
||||
\end{align}
|
||||
|
||||
|
@ -164,3 +164,14 @@ inside the code used for Regulation %TODO: reference
|
|||
\Rightarrow V_O =& I_{ret} \cdot \left( R_1 + R_0 \cdot n_{ret} \right) + V{off}\label{eq:vout2}
|
||||
\end{align}
|
||||
|
||||
|
||||
Alternatively:
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=.5\columnwidth]{tikz/reticlepower_2}
|
||||
\caption{retpow2}
|
||||
\label{fir:retmodelshell}
|
||||
\end{figure}
|
||||
|
||||
so we expect the voltage to change depending on the reticles distance to the nearest voltage supply pad.
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
\documentclass[notitlepage, a4]{scrreprt}
|
||||
\input{preamble}
|
||||
\input{../pitstop/20180729/ret_vals.tex}
|
||||
\usepackage{xparse}
|
||||
\usepackage{siunitx}
|
||||
\sisetup{separate-uncertainty}
|
||||
\input{../pitstop/20180807/res.tex}
|
||||
|
||||
\usepackage{fontawesome}
|
||||
\pretitle{\begin{center}\huge\bfseries}
|
||||
|
|
Binary file not shown.
|
@ -0,0 +1,33 @@
|
|||
\documentclass[]{standalone}
|
||||
\input{./tikzpreamble}
|
||||
|
||||
\begin{document}
|
||||
\begin{circuitikz}[scale=2]
|
||||
|
||||
\draw[color=black, thick]
|
||||
(0,2.8)
|
||||
to [short, *-] (-.8,2.8)
|
||||
to [voltmeter] (-.8,-.35)
|
||||
to [short, -*] (0,-.35)
|
||||
|
||||
(0,3)
|
||||
to [R, l={$R_0$}, v_>=$I_{ges}$, o-] (0,1.5)
|
||||
to [nos, *-] (0,1)
|
||||
to [R, l={$R_1$}, v_>=$I_{ret}$, -o] (0,-.5)
|
||||
|
||||
(0,1.5)
|
||||
to [R, l={$R_{0+}$}] (1,1.5)
|
||||
to [nos, *-] (1,1)
|
||||
to [R, l={$R_1$}, -] (1,-.5)
|
||||
|
||||
(1,1.5)
|
||||
to [R, l={$R_{0+}$}] (2,1.5)
|
||||
to [nos, *-] (2,1)
|
||||
to [R, l={$R_1$}, -] (2,-.5)
|
||||
|
||||
(2,1.5)
|
||||
to [] (2.5, 1.5) node[right]{...}
|
||||
;
|
||||
|
||||
\end{circuitikz}
|
||||
\end{document}
|
Loading…
Reference in New Issue