#! /usr/bin/python3 import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.ioff() plt.style.use('bmh') data = pd.read_csv("./log_2kw_direct.csv") print(data) #plt.errorbar( # data['time'], # data['act_curr_ps'], # yerr=data['act_curr_ps']*.002, # label="Spannungsquelle Ausgang", # fmt='.' #) #plt.errorbar( # data['time'], # data['act_curr_el']-.125, # label="Elektronische Last Eingang", # fmt='.' #) data['act_curr_el'] = data['act_curr_el']-.125 meandist = np.mean(data['act_curr_el'] - data['act_curr_ps']) plt.bar(data['set_curr'], (data['act_curr_el']-data['act_curr_ps']-meandist), .2, aa=True) data['nom_max_delta_i'] = np.sqrt(2*(data['set_curr']*.002)**2) plt.errorbar( data['set_curr'], data['nom_max_delta_i'], fmt='.' ) plt.errorbar( data['set_curr'], -data['nom_max_delta_i'], fmt='.' ) plt.ylabel('$\Delta$I/A') plt.xlabel('I$_{set}$/A') plt.legend() plt.savefig("2kw_direct.png")