bath/data/m04_cycledepends/processing_cycledepends_raw.py

103 lines
2.2 KiB
Python

#! /usr/bin/python4
#import scipy.optimize as opt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import VisTools.plotting as vt
import VisTools.tex as vtt
import sys
#import uncertainties as unc
#import uncertainties.unumpy as unp
try:
append = str(sys.argv[1])
except:
append= ''
plt.ioff()
plt.style.use('bmh')
plt.rcParams['axes.facecolor'] = 'white'
fig, axarr = plt.subplots(
2,
1,
figsize=(10, 8),
gridspec_kw={'height_ratios':[4, 1]}
)
plt.subplots_adjust(hspace=.5)
data = pd.read_csv("./" + __file__[:-3].split("_")[1] + append + ".csv", comment="#")
fits = np.array([])
errs = np.array([])
colors = np.array([])
data['dv_pit48'] /= 2
data['Dv'] = data['v_pit48'] - data['v_set']
data['Dvk'] = data['v_keith'] - data['v_set']
print(data)
# fit to abs dist
linfnc = lambda x, m, c: x*m+c
def plot_and_linfit(col: str, fil, l: str):
plot = axarr[0].errorbar(
data[fil]['v_set'],
data[fil][col],
alpha=0.3,
label=None,
fmt='.',
antialiased=True
)
vals = vt.lm_plot(
data[fil],
'v_set',
col,
None,
'dv_pit48',
l,
fig=axarr[0],
color=plot[0].get_color()
)
return vals, plot
for i in range(8):
val, p = plot_and_linfit(
'Dv',
data.cycles == i,
'$f_{}={{m:.3f}}\\cdot x{{c:+.3f}}V$'.format(i))
fits = np.append(fits, val[0])
#errs = np.append(errs, np.sqrt(pcov[0][0]))
colors = np.append(colors, p[0].get_color() )
plot_and_linfit('Dvk', data.cycles == 0, 'reference measurement')
print(fits[0].n)
for i in range(8):
axarr[1].errorbar(
i,
fits[i].n,
yerr=fits[i].s,
fmt='.',
#c = colors[i],
)
axarr[0].set_xlabel('V$_{set}$')
#axarr[0].set_title("PowerIt ADC Calibration: dependency on measurement cycles")
axarr[0].set_ylabel(r'$\Delta$V$_{IN}$ / V')
axarr[1].set_xlabel('scaler value')
axarr[1].set_ylabel(r'$m = \Delta$Gain')
axarr[0].legend(
bbox_to_anchor=(0, -.29, 1, 1),
loc="lower left",
mode="expand",
borderaxespad=0,
ncol=3)
plt.savefig(
"./" + __file__[:-3].split("_")[1] + append + ".pdf",
dpi=1000,
bbox_inches='tight')
vtt.unc_tolatex(fits[0], "0")