bath/data/processing.py

45 lines
966 B
Python

#! /usr/bin/python3
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('bmh')
data = pd.read_csv("./log_2kw_direct.csv")
print(data)
#plt.errorbar(
# data['time'],
# data['act_curr_ps'],
# yerr=data['act_curr_ps']*.002,
# label="Spannungsquelle Ausgang",
# fmt='.'
#)
#plt.errorbar(
# data['time'],
# data['act_curr_el']-.125,
# label="Elektronische Last Eingang",
# fmt='.'
#)
data['act_curr_el'] = data['act_curr_el']-.125
meandist = np.mean(data['act_curr_el'] - data['act_curr_ps'])
plt.bar(data['set_curr'], (data['act_curr_el']-data['act_curr_ps']-meandist), .2, aa=True)
data['nom_max_delta_i'] = np.sqrt(2*(data['set_curr']*.002)**2)
plt.errorbar(
data['set_curr'],
data['nom_max_delta_i'],
fmt='.'
)
plt.errorbar(
data['set_curr'],
-data['nom_max_delta_i'],
fmt='.'
)
plt.ylabel('$\Delta$I/A')
plt.xlabel('I$_{set}$/A')
plt.legend()
plt.savefig("2kw_direct.png")